翻訳と辞書 |
Brillouin scattering : ウィキペディア英語版 | Brillouin scattering Brillouin scattering, named after Léon Brillouin, occurs when light, transmitted by a transparent carrier interacts with that carrier's periodic spatial & temporal variations in refractive index. As described by optics, the ''index of refraction'' of a transparent material changes under deformation (compression-distension or shear-skewing). The result of the interaction between the light-wave and the carrier-deformation wave is that a fraction of the transmitted light-wave changes its momentum (thus its frequency and energy) in preferential directions, as if by diffraction by an oscillating 3-D grating. If the involved light carrier is a solid crystal, a macromolecular chain condensate or a viscous liquid or gas, then the low frequency atomic-chain-deformation waves in the carrier (represented as a quasiparticle) could be for example: 1. mass oscillation (acoustic) modes (called phonons); 2. charge displacement modes (in dielectrics, called polarons); 3. magnetic spin oscillation modes (in magnetic materials, called magnons). == Mechanism ==
From a solid state physics perspective, Brillouin scattering is an interaction between an electromagnetic wave and one of the three above-mentioned crystalline lattice waves. The scattering is inelastic: the photon may lose energy (Stokes process) to create one of the three quasiparticle types (phonon/ polaron/ magnon) or gain energy (anti-Stokes process) by absorbing one. Such a shift in photon energy, corresponding to a ''Brillouin shift'' in frequency, is equal to the energy of the released/ absorbed quasiparticle. Thus, Brillouin scattering can be used to measure the energies, wavelengths and frequencies of various atomic chain oscillation types ('quasiparticles'). To measure a Brillouin shift a commonly employed device is the Brillouin spectrometer, the construction of which is derived from a Fabry–Pérot interferometer .
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Brillouin scattering」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|